Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.967
Filtrar
1.
Biomolecules ; 14(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38540741

RESUMO

Our laboratory recently reported that induction of the SOS response, triggered by SOS-inducing drugs, was accompanied by a large release of DNA from enteric bacteria. The SOS response release had not previously been reported to include release of extracellular DNA from bacterial cells. We followed up on those observations in this current study and found that not just double-stranded DNA was being released, but also single-stranded DNA, RNA, and protein. SOS-inducing drugs also triggered formation of biofilm at the air-fluid interface on glass, and the biofilms contained DNA. We extended our study to test whether inhibitors of the SOS response would block DNA release and found that SOS inhibitors, including zinc salts, nitric oxide donors, and dequalinium, inhibited SOS-induced DNA release. The understanding that SOS-induced DNA release is associated with formation of biofilms increases our appreciation of the role of the SOS response in pathogenesis, as well as in emergence of new antibiotic resistance. Our findings with SOS inhibitors also suggest that regimens might be devised that could block the deleterious effects of the SOS response, at least temporarily, when this is desired.


Assuntos
Ácidos Nucleicos , Resposta SOS em Genética , Biofilmes , Bactérias Gram-Negativas , DNA
2.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366016

RESUMO

Bacterivorous protists are thought to serve as training grounds for bacterial pathogens by subjecting them to the same hostile conditions that they will encounter in the human host. Bacteria that survive intracellular digestion exhibit enhanced virulence and stress resistance after successful passage through protozoa but the underlying mechanisms are unknown. Here we show that the opportunistic pathogen Burkholderia cenocepacia survives phagocytosis by ciliates found in domestic and hospital sink drains, and viable bacteria are expelled packaged in respirable membrane vesicles with enhanced resistance to oxidative stress, desiccation, and antibiotics, thereby contributing to pathogen dissemination in the environment. Reactive oxygen species generated within the protozoan phagosome promote the formation of persisters tolerant to ciprofloxacin by activating the bacterial SOS response. In addition, we show that genes encoding antioxidant enzymes are upregulated during passage through ciliates increasing bacterial resistance to oxidative radicals. We prove that suppression of the SOS response impairs bacterial intracellular survival and persister formation within protists. This study highlights the significance of protozoan food vacuoles as niches that foster bacterial adaptation in natural and built environments and suggests that persister switch within phagosomes may be a widespread phenomenon in bacteria surviving intracellular digestion.


Assuntos
Antibacterianos , Burkholderia cenocepacia , Animais , Humanos , Antibacterianos/farmacologia , Burkholderia cenocepacia/genética , Resposta SOS em Genética , Comportamento Predatório , Estresse Oxidativo
3.
Ultrason Sonochem ; 103: 106771, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245921

RESUMO

As an effective non-thermal sterilization method, ultrasound remains at the level of passive bacterial death despite the initial understanding of its sterilization mechanism. Here, we present the perspective that bacteria can choose to actively enter an apoptosis-like death state in response to external ultrasonic stress. In this study, Vibrio parahaemolyticus exhibited apoptotic markers such as phosphatidylserine ectropion and activated caspases when subjected to ultrasound stress. Additionally, the accumulation of reactive oxygen species (ROS) and enhanced calcium signaling were observed. Further transcriptomic analysis was conducted to investigate the regulatory mechanism of the SOS response in Vibrio parahaemolyticus during an apoptosis-like state. The results showed that the genes encoding the citrate cycle were down-regulated in Vibrio parahaemolyticus cells adapted to ultrasonic stress, leading to an apoptosis-like state and a decrease in production capacity and ability to catabolize carbon dioxide. Furthermore, the level of oxidized glutathione increased, suggesting that the bacteria were engaged in various anti-oxidative stress responses, ultimately leading to apoptosis. Moreover, the ultrasound field activated the regulatory factor CsrA, which facilitates stress survival as cells transition from rapid growth to an apoptotic state through a stringent response and catabolic inhibition system. Parallel reaction monitoring (PRM) revealed that the expression of certain key SOS proteins in Vibrio parahaemolyticus was up-regulated following ultrasound treatment, resulting in a gradual adaptation of the cells to external stress and ultimately leading to active cell death. In conclusion, the biological lethal effect of ultrasound treatment is not solely a mechanical cell necrosis process as traditionally viewed, but also a programmed cell death process regulated by cellular adaptation. This enriched the biological effect pathway of ultrasound sterilization.


Assuntos
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Resposta SOS em Genética , Ultrassom , Apoptose , Perfilação da Expressão Gênica
4.
Biochem Biophys Res Commun ; 691: 149313, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38035405

RESUMO

In Escherichia coli, the SulA protein is synthesized during the SOS response to arrest cell division. Two possible models of SulA action were proposed: the sequestration and the capping. In current paper, to clarify which model better reflects the SulA effect on cell division upon the SOS response, the FtsZ/SulA ratio was estimated inside cells based on fusion of both FtsZ and SulA to fluorescent protein mNeonGreen. This allowed to quantify this ratio by fluorescence microscopy as well as western blotting; moreover, the effect of SulA on FtsZ distribution patterns in cells was analyzed based on fluorescence microscopy images. The SulA concentration in cells under the SOS response was shown to be several times (about 10) lower than that of FtsZ. The effect of SulA was unequal to corresponding decrease in FtsZ concentration. These results are supported by uneven FtsZ distribution in cells under the SOS response. Together the results of current work indicate that the division arrest by SulA protein in E. coli cells could not be explained by the sequestration model.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Resposta SOS em Genética , Proteínas do Citoesqueleto/metabolismo
5.
Curr Opin Microbiol ; 73: 102323, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148591

RESUMO

Cells across domains of life have dedicated pathways to sense and respond to DNA damage. These responses are broadly termed as DNA damage responses (DDRs). In bacteria, the best studied DDR is the Save our Soul (SOS) response. More recently, several SOS-independent DDRs have also been discovered. Studies further report diversity in the types of repair proteins present across bacterial species as well as differences in their mechanisms of action. Although the primary function of DDRs is preservation of genome integrity, the diverse organization, conservation, and function of bacterial DDRs raises important questions about how genome error correction mechanisms could influence or be influenced by the genomes that encode them. In this review, we discuss recent insights on three SOS-independent bacterial DDRs. We consider open questions in our understanding of how diversity in response and repair mechanisms is generated, and how action of these pathways is regulated in cells to ensure maintenance of genome integrity.


Assuntos
Bactérias , Resposta SOS em Genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Bactérias/genética , Bactérias/metabolismo , Dano ao DNA , Reparo do DNA , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
6.
Antimicrob Agents Chemother ; 67(3): e0139222, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36802234

RESUMO

The suppression of the SOS response has been shown to enhance the in vitro activity of quinolones. Furthermore, Dam-dependent base methylation has an impact on susceptibility to other antimicrobials affecting DNA synthesis. Here, we investigated the interplay between these two processes, alone and in combination, in terms of antimicrobial activity. A genetic strategy was used employing single- and double-gene mutants for the SOS response (recA gene) and the Dam methylation system (dam gene) in isogenic models of Escherichia coli both susceptible and resistant to quinolones. Regarding the bacteriostatic activity of quinolones, a synergistic sensitization effect was observed when the Dam methylation system and the recA gene were suppressed. In terms of growth, after 24 h in the presence of quinolones, the Δdam ΔrecA double mutant showed no growth or delayed growth compared to the control strain. In bactericidal terms, spot tests showed that the Δdam ΔrecA double mutant was more sensitive than the ΔrecA single mutant (about 10- to 102-fold) and the wild type (about 103- to 104-fold) in both susceptible and resistant genetic backgrounds. Differences between the wild type and the Δdam ΔrecA double mutant were confirmed by time-kill assays. The suppression of both systems, in a strain with chromosomal mechanisms of quinolone resistance, prevents the evolution of resistance. This genetic and microbiological approach demonstrated the enhanced sensitization of E. coli to quinolones by dual targeting of the recA (SOS response) and Dam methylation system genes, even in a resistant strain model.


Assuntos
Proteínas de Escherichia coli , Quinolonas , Escherichia coli , Antibacterianos/farmacologia , Resposta SOS em Genética , Epigenoma , Proteínas de Escherichia coli/genética , Quinolonas/farmacologia , Mutação/genética
8.
J Bacteriol ; 205(1): e0026222, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36622230

RESUMO

The adaptation of Salmonella enterica serovar Typhimurium to stress conditions involves expression of genes within the regulon of the alternative sigma factor RpoN (σ54). RpoN-dependent transcription requires an activated bacterial enhancer binding protein (bEBP) that hydrolyzes ATP to remodel the RpoN-holoenzyme-promoter complex for transcription initiation. The bEBP RtcR in S. Typhimurium strain 14028s is activated by genotoxic stress to direct RpoN-dependent expression of the RNA repair operon rsr-yrlBA-rtcBA. The molecular signal for RtcR activation is an oligoribonucleotide with a 3'-terminal 2',3'-cyclic phosphate. We show in S. Typhimurium 14028s that the molecular signal is not a direct product of nucleic acid damage, but signal generation is dependent on a RecA-controlled SOS-response pathway, specifically, induction of prophage Gifsy-1. A genome-wide mutant screen and utilization of Gifsy prophage-cured strains indicated that the nucleoid-associated protein Fis and the Gifsy-1 prophage significantly impact RtcR activation. Directed-deletion analysis and genetic mapping by transduction demonstrated that a three-gene region (STM14_3218-3220) in Gifsy-1, which is variable between S. Typhimurium strains, is required for RtcR activation in strain 14028s and that the absence of STM14_3218-3220 in the Gifsy-1 prophages of S. Typhimurium strains LT2 and 4/74, which renders these strains unable to activate RtcR during genotoxic stress, can be rescued by complementation in cis by the region encompassing STM14_3218-3220. Thus, even though RtcR and the RNA repair operon are highly conserved in Salmonella enterica serovars, RtcR-dependent expression of the RNA repair operon in S. Typhimurium is controlled by a variable region of a prophage present in only some strains. IMPORTANCE The transcriptional activator RtcR and the RNA repair proteins whose expression it regulates, RtcA and RtcB, are widely conserved in Proteobacteria. In Salmonella Typhimurium 14028s, genotoxic stress activates RtcR to direct RpoN-dependent expression of the rsr-yrlBA-rtcBA operon. This work identifies key elements of a RecA-dependent pathway that generates the signal for RtcR activation in strain 14028s. This signaling pathway requires the presence of a specific region within the prophage Gifsy-1, yet this region is absent in most other wild-type Salmonella strains. Thus, we show that the activity of a widely conserved regulatory protein can be controlled by prophages with narrow phylogenetic distributions. This work highlights an underappreciated phenomenon where bacterial physiological functions are altered due to genetic rearrangement of prophages.


Assuntos
Salmonella enterica , Salmonella typhimurium , Salmonella typhimurium/genética , Prófagos/genética , Sorogrupo , Filogenia , Resposta SOS em Genética , Óperon , Salmonella enterica/genética , Fatores de Transcrição/genética , RNA , Proteínas de Bactérias/genética
9.
Proc Natl Acad Sci U S A ; 120(2): e2217493120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36598938

RESUMO

In response to DNA damage, bacterial RecA protein forms filaments with the assistance of DinI protein. The RecA filaments stimulate the autocleavage of LexA, the repressor of more than 50 SOS genes, and activate the SOS response. During the late phase of SOS response, the RecA filaments stimulate the autocleavage of UmuD and λ repressor CI, leading to mutagenic repair and lytic cycle, respectively. Here, we determined the cryo-electron microscopy structures of Escherichia coli RecA filaments in complex with DinI, LexA, UmuD, and λCI by helical reconstruction. The structures reveal that LexA and UmuD dimers bind in the filament groove and cleave in an intramolecular and an intermolecular manner, respectively, while λCI binds deeply in the filament groove as a monomer. Despite their distinct folds and oligomeric states, all RecA filament binders recognize the same conserved protein features in the filament groove. The SOS response in bacteria can lead to mutagenesis and antimicrobial resistance, and our study paves the way for rational drug design targeting the bacterial SOS response.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Resposta SOS em Genética , Microscopia Crioeletrônica , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Recombinases Rec A/metabolismo
10.
Nature ; 613(7944): 588-594, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599979

RESUMO

Bacterial abortive-infection systems limit the spread of foreign invaders by shutting down or killing infected cells before the invaders can replicate1,2. Several RNA-targeting CRISPR-Cas systems (that is, types III and VI) cause abortive-infection phenotypes by activating indiscriminate nucleases3-5. However, a CRISPR-mediated abortive mechanism that leverages indiscriminate DNase activity of an RNA-guided single-effector nuclease has yet to be observed. Here we report that RNA targeting by the type V single-effector nuclease Cas12a2 drives abortive infection through non-specific cleavage of double-stranded DNA (dsDNA). After recognizing an RNA target with an activating protospacer-flanking sequence, Cas12a2 efficiently degrades single-stranded RNA (ssRNA), single-stranded DNA (ssDNA) and dsDNA. Within cells, the activation of Cas12a2 induces an SOS DNA-damage response and impairs growth, preventing the dissemination of the invader. Finally, we harnessed the collateral activity of Cas12a2 for direct RNA detection, demonstrating that Cas12a2 can be repurposed as an RNA-guided RNA-targeting tool. These findings expand the known defensive abilities of CRISPR-Cas systems and create additional opportunities for CRISPR technologies.


Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , DNA , RNA , Proteínas Associadas a CRISPR/metabolismo , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , RNA/metabolismo , Resposta SOS em Genética , Dano ao DNA , RNA Guia de Sistemas CRISPR-Cas , Edição de Genes
11.
Microbiol Spectr ; 11(1): e0220122, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36472437

RESUMO

The broad-host-range IncC plasmid family and the integrative mobilizable Salmonella genomic island 1 (SGI1) and its derivatives enable the spread of medically important antibiotic resistance genes among Gram-negative pathogens. Although several aspects of the complex functional interactions between IncC plasmids and SGI1 have been recently deciphered regarding their conjugative transfer and incompatibility, the biological signal resulting in the hijacking of the conjugative plasmid by the integrative mobilizable element remains unknown. Here, we demonstrate that the conjugative entry of IncC/IncA plasmids is detected at an early stage by SGI1 through the transient activation of the SOS response, which induces the expression of the SGI1 master activators SgaDC, shown to play a crucial role in the complex biology between SGI1 and IncC plasmids. Besides, we developed an original tripartite conjugation approach to directly monitor SGI1 mobilization in a time-dependent manner following conjugative entry of IncC plasmids. Finally, we propose an updated biological model of the conjugative mobilization of the chromosomal resistance element SGI1 by IncC plasmids. IMPORTANCE Antimicrobial resistance has become a major public health issue, particularly with the increase of multidrug resistance (MDR) in both animal and human pathogenic bacteria and with the emergence of resistance to medically important antibiotics. The spread between bacteria of successful mobile genetic elements, such as conjugative plasmids and integrative elements conferring multidrug resistance, is the main driving force in the dissemination of acquired antibiotic resistances among Gram-negative bacteria. Broad-host-range IncC plasmids and their integrative mobilizable SGI1 counterparts contribute to the spread of critically important resistance genes (e.g., extended-spectrum ß-lactamases [ESBLs] and carbapenemases). A better knowledge of the complex biology of these broad-host-range mobile elements will help us to understand the dissemination of antimicrobial resistance genes that occurred across Gammaproteobacteria borders.


Assuntos
Ilhas Genômicas , Resposta SOS em Genética , Humanos , Plasmídeos/genética , Salmonella/genética , Antibacterianos/farmacologia , Conjugação Genética
12.
Biochemistry ; 61(24): 2884-2896, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36473084

RESUMO

The SOS response is a bacterial DNA damage response pathway that has been heavily implicated in bacteria's ability to evolve resistance to antibiotics. Activation of the SOS response is dependent on the interaction between two bacterial proteins, RecA and LexA. RecA acts as a DNA damage sensor by forming lengthy oligomeric filaments (RecA*) along single-stranded DNA (ssDNA) in an ATP-dependent manner. RecA* can then bind to LexA, the repressor of SOS response genes, triggering LexA degradation and leading to induction of the SOS response. Formation of the RecA*-LexA complex therefore serves as the key "SOS activation signal." Given the challenges associated with studying a complex involving multiple macromolecular interactions, the essential constituents of RecA* that allow LexA cleavage are not well defined. Here, we leverage head-to-tail linked and end-capped RecA constructs as tools to define the minimal RecA* filament that can engage LexA. In contrast to previously postulated models, we found that as few as three linked RecA units are capable of ssDNA binding, LexA binding, and LexA cleavage. We further demonstrate that RecA oligomerization alone is insufficient for LexA cleavage, with an obligate requirement for ATP and ssDNA binding to form a competent SOS activation signal with the linked constructs. Our minimal system for RecA* highlights the limitations of prior models for the SOS activation signal and offers a novel tool that can inform efforts to slow acquired antibiotic resistance by targeting the SOS response.


Assuntos
Proteínas de Bactérias , Resposta SOS em Genética , Proteínas de Bactérias/química , Bactérias/metabolismo , Dano ao DNA , Trifosfato de Adenosina , Recombinases Rec A/química
13.
Structure ; 30(11): 1467-1469, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36332609

RESUMO

In this issue of Structure, Maso et al. (2022) discover nanobodies that inhibit the SOS response of Escherichia coli by targeting the LexA repressor-protease. High-resolution structures of the novel LexA-nanobody complexes reveal they function by stabilizing LexA in its inactive conformation and preventing co-proteolysis by RecA∗.


Assuntos
Camelídeos Americanos , Resposta SOS em Genética , Animais , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Camelídeos Americanos/metabolismo , Lã/metabolismo , Proteínas de Bactérias/genética , Serina Endopeptidases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Bactérias/metabolismo
14.
Structure ; 30(11): 1479-1493.e9, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36240773

RESUMO

Antimicrobial resistance threatens the eradication of infectious diseases and impairs the efficacy of available therapeutics. The bacterial SOS pathway is a conserved response triggered by genotoxic stresses and represents one of the principal mechanisms that lead to resistance. The RecA recombinase acts as a DNA-damage sensor inducing the autoproteolysis of the transcriptional repressor LexA, thereby derepressing SOS genes that mediate DNA repair, survival to chemotherapy, and hypermutation. The inhibition of such pathway represents a promising strategy for delaying the evolution of antimicrobial resistance. We report the identification, via llama immunization and phage display, of nanobodies that bind LexA with sub-micromolar affinity and block autoproteolysis, repressing SOS response in Escherichia coli. Biophysical characterization of nanobody-LexA complexes revealed that they act by trapping LexA in an inactive conformation and interfering with RecA engagement. Our studies pave the way to the development of new-generation antibiotic adjuvants for the treatment of bacterial infections.


Assuntos
Resposta SOS em Genética , Anticorpos de Domínio Único , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Antibacterianos/farmacologia
15.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36142827

RESUMO

Bacterial SSB proteins, as well as their eukaryotic RPA analogues, are essential and ubiquitous. They avidly bind single-stranded DNA and regulate/coordinate its metabolism, hence enabling essential DNA processes such as replication, transcription, and repair. The prototypic Escherichia coli SSB protein is encoded by an ssb gene. Although the ssb gene promoters harbor an SOS box, multiple studies over several decades failed to elucidate whether ssb gene expression is inducible and SOS dependent. The SOS regulon is comprised of about 50 genes, whose transcription is coordinately induced under stress conditions. Using quantitative real-time PCR, we determined the ssb gene expression kinetics in UV- and γ-irradiated E. coli and revealed that ssb gene expression is elevated in irradiated cells in an SOS-dependent manner. Additionally, the expression of the sulA gene was determined to indicate the extent of SOS induction. In a mutant with a constitutively induced SOS regulon, the ssb gene was overexpressed in the absence of DNA damage. Furthermore, we measured ssb gene expression by droplet digital PCR during unaffected bacterial growth and revealed that ssb gene expression was equal in wild-type and SOS- bacteria, whereas sulA expression was higher in the former. This study thus reveals a complex pattern of ssb gene expression, which under stress conditions depends on the SOS regulon, whereas during normal bacterial growth it is unlinked to SOS induction. The E. coli ssb gene is SOS regulated in such a way that its basal expression is relatively high and can be increased only through stronger SOS induction. The remarkable SOS induction observed in undisturbed wild-type cells may challenge our notion of the physiological role of the SOS response in bacteria.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Resposta SOS em Genética/genética
16.
J Biol Chem ; 298(9): 102307, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35934051

RESUMO

Apurinic/apyrimidinic (AP, or abasic) sites in DNA are one of the most common forms of DNA damage. AP sites are reactive and form cross-links to both proteins and DNA, are prone to strand breakage, and inhibit DNA replication and transcription. The replication-associated AP site repair protein HMCES protects cells from strand breaks, inhibits mutagenic translesion synthesis, and participates in repair of interstrand DNA cross-links derived from AP sites by forming a stable thiazolidine DNA-protein cross-link (DPC) to AP sites in single-stranded DNA (ssDNA). Despite the importance of HMCES to genome maintenance and the evolutionary conservation of its catalytic SRAP (SOS Response Associated Peptidase) domain, the enzymatic mechanisms of DPC formation and resolution are unknown. Using the bacterial homolog YedK, we show that the SRAP domain catalyzes conversion of the AP site to its reactive, ring-opened aldehyde form, and we provide structural evidence for the Schiff base intermediate that forms prior to the more stable thiazolidine. We also report two new activities, whereby SRAP reacts with polyunsaturated aldehydes at DNA 3'-ends generated by bifunctional DNA glycosylases and catalyzes direct reversal of the DPC to regenerate the AP site, the latter of which we observe in both YedK and HMCES-SRAP proteins. Taken together, this work provides insights into possible mechanisms by which HMCES DPCs are resolved in cells.


Assuntos
DNA Glicosilases , DNA de Cadeia Simples , Aldeídos , DNA/metabolismo , Dano ao DNA , DNA Glicosilases/metabolismo , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas/genética , Resposta SOS em Genética , Bases de Schiff , Tiazolidinas
17.
Int J Biol Macromol ; 217: 931-943, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35905765

RESUMO

Antibiotics have a primary mode of actions, and most of them have a common secondary mode of action via reactive species (ROS and RNS) mediated DNA damage. Bacteria have been able to tolerate this DNA damage by SOS (Save-Our-Soul) response. RecA is the universal essential key protein of the DNA damage mediated SOS repair in various bacteria including ESKAPE pathogens. In addition, antibiotics also triggers activation of various other bacterial mechanisms such as biofilm formation, host dependent responses, persister subpopulation formation. These supporting the survival of bacteria in unfriendly natural conditions i.e. antibiotic presence. This review highlights the detailed mechanism of RecA mediated SOS response as well as role of RecA-LexA interaction in SOS response. The review also focuses on inter-connection between DNA damage repair pathway (like SOS response) with other survival mechanisms of bacteria such as host mediated RecA induction, persister-SOS interplay, and biofilm-SOS interplay. This understanding of inter-connection of SOS response with different other survival mechanisms will prove beneficial in targeting the SOS response for prevention and development of therapeutics against recalcitrant bacterial infections. The review also covers the significance of RecA as a promising potent therapeutic target for hindering bacterial SOS response in prevailing successful treatments of bacterial infections and enhancing the conventional antibiotic efficiency.


Assuntos
Infecções Bacterianas , Resposta SOS em Genética , Antibacterianos/farmacologia , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes , Humanos , Recombinases Rec A/genética , Recombinases Rec A/metabolismo
18.
Mol Syst Biol ; 18(5): e10441, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35620827

RESUMO

In natural environments, bacteria are frequently exposed to sub-lethal levels of DNA damage, which leads to the induction of a stress response (the SOS response in Escherichia coli). Natural environments also vary in nutrient availability, resulting in distinct physiological changes in bacteria, which may have direct implications on their capacity to repair their chromosomes. Here, we evaluated the impact of varying the nutrient availability on the expression of the SOS response induced by chronic sub-lethal DNA damage in E. coli. We found heterogeneous expression of the SOS regulon at the single-cell level in all growth conditions. Surprisingly, we observed a larger fraction of high SOS-induced cells in slow growth as compared with fast growth, despite a higher rate of SOS induction in fast growth. The result can be explained by the dynamic balance between the rate of SOS induction and the division rates of cells exposed to DNA damage. Taken together, our data illustrate how cell division and physiology come together to produce growth-dependent heterogeneity in the DNA damage response.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Bactérias/metabolismo , Dano ao DNA , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Resposta SOS em Genética
19.
J Bacteriol ; 204(5): e0008122, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35442066

RESUMO

In Escherichia coli K-12, RecA binds to single-strand DNA (ssDNA) created by DNA damage to form a protein-DNA helical filament that serves to catalyze LexA autoproteolysis, which induces the SOS response. The SOS constitutive (SOSC) mutations recA730(E38K) and recA1202(Q184K) are both on the outside of the RecA filament, opposite to the face that binds DNA. recA730(E38K) is also able to suppress the UV sensitivity caused by recF mutations. Both SOSC expression and recF suppression are thought to be due to RecA730's ability to compete better for ssDNA coated with ssDNA-binding protein than the wild type. We tested whether other positively charged residues at these two positions would lead to SOSC expression and recF suppression. We found that 5/6 positively charged residues were SOSC and 4/5 of these were also recF suppressors. While other mutations at these two positions (and others) were recF suppressors, none were SOSC. Three recF suppressors could be made moderately SOSC by adding a recA operator mutation. We hypothesize two mechanisms for SOSC expression: the first suggests that the positive charge at positions 38 and 184 attract negatively charged molecules that block interactions that would destabilize the RecA-DNA filament, and the second involves more stable filaments caused by increases in mutant RecA concentration. IMPORTANCE In Escherichia coli K-12, SOS constitutive (SOSC) mutants of recA turn on the SOS response in the absence of DNA damage. Some SOSC mutants are also able to indirectly suppress the UV sensitivity of recF mutations. Two SOSC mutations, recA730(E38K) and recA1202(Q184K), define a surface on the RecA-DNA filament opposite the surface that binds DNA. Both introduce positive charges, and recA730 is a recF suppressor. We tested whether the positive charge at these two positions was required for SOSC expression and recF suppression. We found a high correlation between the positive charge, SOSC expression and recF suppression. We also found several other mutations (different types) that provide recF suppression but no SOSC expression.


Assuntos
Escherichia coli K12 , Proteínas de Escherichia coli , Proteínas de Bactérias/metabolismo , DNA de Cadeia Simples/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação , Fenótipo , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Resposta SOS em Genética
20.
Cell Rep ; 39(3): 110723, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35443160

RESUMO

Listeria monocytogenes strain 10403S harbors two phage elements in its chromosome; one produces infective virions and the other tailocins. It was previously demonstrated that induction of the two elements is coordinated, as they are regulated by the same anti-repressor. In this study, we identified AriS as another phage regulator that controls the two elements, bearing the capacity to inhibit their lytic induction under SOS conditions. AriS is a two-domain protein that possesses two distinct activities, one regulating the genes of its encoding phage and the other downregulating the bacterial SOS response. While the first activity associates with the AriS N-terminal AntA/AntB domain, the second associates with its C-terminal ANT/KilAC domain. The ANT/KilAC domain is conserved in many AriS-like proteins of listerial and non-listerial prophages, suggesting that temperate phages acquired such dual-function regulators to align their response with the other phage elements that cohabit the genome.


Assuntos
Bacteriófagos , Listeria monocytogenes , Bacteriófagos/genética , Listeria monocytogenes/genética , Lisogenia , Prófagos/genética , Resposta SOS em Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...